Recombinant Subunit Proteins Based Dengue Vaccines
The selection of recombinant protein expression systems depends on major factors namely protein yield, its quality, ability to scale-up, time and cost of production. Most of the recombinant dengue virus proteins for vaccine development studies are produced in either bacteria (E. coli), yeast (S. cerevisiae and P. pastoris), mammalian cells (HeLa, HEK, Vero and BHK), insect cells (Sf-9 and S-2), or transgenic plants (Nicotiana tabacum and N. benthamiana) (17, 20, 74, 86, 112, 133, 134). Recombinant microbial production systems have already delivered a successful vaccine against Hepatitis B with proven safety record. The recently licensed Dengvaxia is unable to provide complete protection in humans and has led to increased hospitalization rates in seronegative humans due to disease enhancing antibodies (8). Therefore it has raised serious concern regarding the safety of live attenuated vaccines. Thus, alternative dengue vaccines are the need of time based on other approaches. In dengue vaccine development, an alternative approach to live attenuated/purified inactivated vaccines is the recombinant protein based dengue subunit vaccines. The main advantage of a recombinant subunit vaccine for dengue includes balanced immune response against all four dengue virus serotypes. Further, it was also reported that the recombinant subunit vaccine needed a low antigen dose for vaccination (11, 135). It also reduces the risk of ADE (89). In addition, recombinant vaccines are believed to offer full protection in a significantly shorter time-frame than that needed for live attenuated vaccines. The dengue virus E protein or its DIII and NS1 protein have been the main focus of recombinant subunit vaccine development using various approaches like the fusion with other components or use of adjuvants and many others (20)
dan wordt het tijd dat er de rhC1INH v Pharming bij gaat komen .